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Abstract

A phase field model which describes the motion of mixtures of two incompressible fluids is presented by Liu and Shen
[C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spec-
tral method, Phys. D 179 (2003) 211–228]. The model is based on an energetic variational formulation. In this work, we
develop an efficient adaptive mesh method for solving a phase field model for the mixture flow of two incompressible fluids.
It is a coupled nonlinear system of Navier–Stokes equations and Allen–Cahn phase equation (phase-field equation)
through an extra stress term and the transport term. The numerical strategy is based on the approach proposed by Li
et al. [R. Li, T. Tang, P.-W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput.
Phys. 170 (2001) 562–588] to separate the mesh-moving and PDE evolution. In the PDE evolution part, the phase-field
equation is numerically solved by a conservative scheme with a Lagrange multiplier, and the coupled incompressible
Navier–Stokes equations are solved by the incremental pressure-correction projection scheme based on the semi-staggered
grid method. In the mesh-moving part, the mesh points are iteratively redistributed by solving the Euler–Lagrange equa-
tions with a parameter-free monitor function. In each iteration, the pressure and the phase are updated on the resulting
new grid by a conservative-interpolation formula, while the velocity is re-mapped in a non-conservative approach. A sim-
ple method for preserving divergence-free is obtained by projecting the velocity onto the divergence-free space after gen-
erating the new mesh at the last iterative step. Numerical experiments are presented to demonstrate the effectiveness of the
proposed method for solving the incompressible mixture flows.
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1. Introduction

In this paper, we shall discuss the class of adaptive grid methods often called moving mesh methods (or
dynamic methods in contrast to the static methods) for solving time-dependent PDEs. These methods involve
the solution of the underlying PDE for the physical problem in conjunction with a so-called moving mesh
PDE for the mesh itself. Adaptive mesh redistribution methods have important applications in a variety of
physical and engineering areas such as solid and fluid dynamics, combustion, heat transfer, material science
and others. The physical phenomena in these areas may develop dynamically singular or nearly singular solu-
tions in fairly localized region. The numerical investigation of these physical problems may require extremely
fine meshes over a small portion of the physical domain to resolve the large solution variations. The use of
globally refined uniform meshes becomes computationally wasteful when dealing with systems in two or
higher dimensions. In multi-dimensional problems, developing an effective and robust adaptive mesh method
becomes almost absolutely necessary. Successful implementation of the adaptive approaches can improve the
accuracy of the numerical approximation and correspondingly decrease the computational cost.

Numerical study of free boundaries can be grouped broadly into two categories. One is to solve sharp-inter-
face problems in which one or more variables (or their derivatives) are typically discontinuous across an inter-
face, and the other is to solve a system of parabolic equations in which the interface is specified by a level set of
one of the variables. The latter approach, also called phase field approach, has two appealing features: (i) a
broad spectrum of distinct problems that can be studied by means of a single set of equations, and (ii) the
interface in these problems does not need to be tracked explicitly.

Phase field models are an increasingly popular choice for modeling the motion of multi-phase fluids (see [1]
for a recent review). In the phase-field model, sharp fluid interfaces are replaced by thin but nonzero thickness
transition regions where the interfacial forces are smoothly distributed. The basic idea is to introduce a con-
served order parameter (e.g., mass concentration) that varies continuously over thin interfacial layers and is
mostly uniform in the bulk phases. These models allow topological changes of the interface [28] and have
many advantages in numerical simulations of the interfacial motion [12]. Thus, it is also known as the dif-
fuse-interface model. More precisely, in this work, a phase-field variable / is introduced, which can be thought
of as the volume fraction, to demarcate the two species and indicate the location of the interface. A mixing
energy is defined based on / which, through a convection–diffusion equation, governs the evolution of the
interfacial profile. The phase-field method can be viewed as a physically motivated level-set method, and
Lowengrub and Truskinovsky [28] have argued for the advantage of using a physically determined / profile
instead of an artificial smoothing function for the interface. When the thickness of the interface approaches
zero, the diffuse-interface model becomes asymptotically identical to a sharp-interface level-set formulation.
It also reduces properly to the classical sharp-interface model in general. Recently, many researchers have
employed the phase field approach in various fluid environments [19,25,27,30]. Based on an energetic varia-
tional formulation, Liu and Shen [25,26] employed a phase field model to describe the mixture of two incom-
pressible Newtonian fluids. The mixing energy studied is related to the usual Ginzburg–Laudau model for
phase evolutions.

Most numerical methods used to solve the phase-field equations have employed stationary uniform meshes,
see examples in [9,20,26,38,41]. It is well known the importance that the diffused interface be well resolved if
the correct dynamics are to be reproduced. As the phase interface moves in time it is clear that an efficient
numerical procedure to solve the phase-field equations should incorporate some form of mesh adaptation
as necessitated by the phase field being invariably away from the interface region. There have been two
approaches in doing this. One is to use the local mesh refinement method, i.e. h-method (see e.g. [8,31]).
The adaptive mesh is generated by adding or removing grid points to achieve a desired level of accuracy, which
allows a systematic error analysis. However, the local mesh refinement approach requires complicated data
structures and technically complex methods/means to communicate information among different levels of
refinement. The other is to use moving mesh methods in our paper, i.e. r-method, which requires less compli-
cated data structures than the local mesh refinement methods. The algorithm includes two independent parts:
mesh-redistribution and PDE evolution. The second part is independent of the first, which can be any of the
standard codes for the given PDEs. In the mesh redistribution approach, the adaptive method can keep the
total number of grid points unchanged, and cluster more grid points in areas with singularities or large solu-
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tion gradients. In the past two decades the moving mesh methods have been proven very useful for time-
dependent problems with localized singularities, see e.g. [2,3,7,13,14,23,34,35]. The basic idea of moving mesh
method is to construct a transformation from a logical domain (or called computational domain) to the phys-
ical domain. A fixed mesh is given on the logical domain, and the transformation is realized by solving moving
mesh PDEs or minimization problems for a mesh functional, see e.g. [10,17,24]. Computational cost of mov-
ing mesh methods can be efficiently minimized with locally varying time steps [35]. Recently, Mackenzie and
Robertson have put forward a simple moving mesh strategy for interface propagation problems. They also
developed a moving mesh method for the one-dimensional phase-change problems modeled by the phase-field
equations [29]. In another recent work, Becket et al. [4] developed a moving finite element method for the solu-
tion of the two-dimensional phase-field equations. Tan et al. [34] develop a simple moving mesh method for
one- and two-dimensional phase-field equations. One should note, however, that the phase-field model
employed in this paper is different from those in [4,29,34]; it models a specific type of the mixture of two
incompressible fluids. Very recently, Zhang and Tang [44] did a similar work on adaptive moving mesh meth-
ods of the phase field.

The main objective of this work is to develop an efficient adaptive moving mesh method to solve a phase
field model for the mixture flow of two incompressible fluids. Our approach is based on the strategy proposed
in [23] by decoupling the mesh motion and the PDE evolution. This approach requires using an interpolation
to transform the information from the old mesh to the new mesh. We first transform the governing equations
into the computational domain by a local (time-independent) mapping. The mapping is obtained via the mov-
ing mesh approach, namely by solving the Euler–Lagrange equations involving monitor functions. This
approach allows fast solution solvers such as multi-grid methods to solve for the resulting system. Again, solu-
tion interpolations are employed so that time-independent mappings at each time can be utilised.

This paper is organized as follows. In Section 2, we describe a phase field model for the mixture of two
incompressible fluids. Sections 3 and 4 describe the used numerical method. The 2D moving mesh technique
will be described in Section 5. Numerical results are included in Section 6. Some concluding remarks will be
made in Section 7.

2. A phase field model for the mixture of two incompressible fluids

Let Xp be a two-dimensional physical domain filled with two incompressible fluids separated by a free mov-
ing interface. As in [26], we introduce a phase function /ðx; tÞ to identify the two fluids (fx : /ðx; tÞ ¼ 1g is
occupied by fluid 1 and fx : /ðx; tÞ ¼ �1g by fluid 2), and consider the following Ginzburg–Landau type
of mixing energy:
W ð/;r/Þ ¼
Z

Xp

1

2
jr/j2 þ 1

4g2
ð/2 � 1Þ2

� �
dx: ð2:1Þ
The first part of the energy represents the hydrophillic interaction between the molecules and the second part the
hydrophobic interactions. It is the competition between these two parts of the energy that gives the hydrostatic
configuration of the interface (see for instance [26]). The constant g can be viewed as the ratio between these two
parts of energies. The interface is represented by fx : /ðx; tÞ ¼ 0g with a transition layer of thickness g.

The dynamics of / can be driven by either Allen–Cahn or Cahn–Hillard types of gradient flow, depending
on the choice of dissipative mechanism. The former leads to the Allen–Cahn equation:
/t þ u � r/ ¼ �c
dW
d/
¼ cðD/� hð/ÞÞ; ð2:2Þ
while the latter leads to the Cahn–Hillard equation:
/t þ u � r/ ¼ r � cr dW
d/

� �
¼ �cDðD/� hð/ÞÞ; ð2:3Þ
where hð/Þ ¼H0ð/Þ and u ¼ ðu; vÞ is the velocity vector of the fluids. Here Hð/Þ ¼ ðj/j2 � 1Þ2=4g2 is the
usual double-well potential. The parameter c represents the elastic relaxation time. As c! 0, the limiting /
satisfies the transport equation, which is equivalent to the mass transport equation (for incompressible fluids).
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Hence this formulation can also be viewed as the link (relaxation) between a mass average (in the kinetic en-
ergy) and a volume average (in the elastic energy) between the two species.

In this paper, we will use the Allen–Cahn dynamics since its numerical treatment is simpler than that of the
Cahn–Hilliard type which involves fourth-order differential operators. It is noted that the solution / of (2.2)
does not preserve overall volume fraction. So we introduce a Lagrange multiplier nðtÞ into the Allen–Cahn
model to conserve the volume as a constraint [40]. More precisely, the modified Allen–Cahn equation reads
like follows:
/t þ u � r/ ¼ cðD/� hð/Þ þ nðtÞÞ; ð2:4Þ
d

dt

Z
Xp

/ dx ¼ 0: ð2:5Þ
We now describe the governing equations for the fluid flow. The momentum equation takes the form, which
can be derived by the least action principle [25,26]:
qðut þ ðu � rÞuÞ ¼ �rp þr � r; ð2:6Þ

where q is the density, p is the pressure and r is the deviatoric stress tensor that includes the viscous tensor and
the induced elastic stress tensor. When we take into account the competition between the kinetic energy and
the elastic energy (i.e., the mixing energy), we find:
r ¼ m½ruþ ðruÞT� � kðr/�r/Þ; ð2:7Þ

where m is the dynamic viscosity coefficient, the term r/�r/ is the usual tensor product, i.e.
ðr/�r/Þij ¼ ri/rj/, and k corresponds to the surface tension.

With same density (which is taken to be 1) and same viscosity constants, the system governing the mixture
of two incompressible fluids can be written as follows:
ut þ ðu � rÞuþrp � lDuþ kr � ðr/�r/Þ ¼ gðxÞ; ð2:8Þ
r � u ¼ 0; ð2:9Þ
and
/t þ ðu � rÞ/ ¼ cðD/� hð/Þ þ nðtÞÞ; ð2:10Þ
d

dt

Z
Xp

/ dx ¼ 0; ð2:11Þ
where g is the external body force. The coupled nonlinear system (2.8)–(2.11) will be subjected to the initial
conditions
ujt¼0 ¼ u0; /jt¼0 ¼ /0;
and appropriate boundary conditions.
In the above system, the induced elastic stress r/�r/ is due to the mixing of the different species. From

this, we can see that D/r/ ¼ r � ðr/�r/Þ � rð1
2
jr/j2Þ gives the corresponding elastic force, and the

rð1
2
jr/j2Þ term can be absorbed into the pressure in the computation.

3. Projection method

We employ a semi-staggered incremental pressure-correction projection scheme [16] for the discretization
of the incompressible Navier–Stokes equations. We now describe our numerical approach. Given the veloc-
ity un, the pressure pn and the phase function /n at time level n, we obtain the velocity unþ1 and the pn+1 at
time level n + 1 using three stages. In the first stage, the momentum equations are solved for an approxi-
mate velocity field which is not generally divergence-free. In the second stage, we need to solve a Poisson-
like equation with Neumann-type boundary conditions. In the third stage, the pressure and the velocity
fields are corrected to satisfy the continuity equation. To summarize, the algorithm traces the following
steps:
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� Step 1: Compute an intermediate velocity field ~unþ1 by solving
~unþ1 � un

Dtn
þ ðun � rÞun ¼ �rpn þ lD~unþ1 þ �hð/nÞ; ~unþ1joXp

¼ 0; ð3:1Þ
where �hð/nÞ ¼ kðD/nÞr/n þ gðxÞ.
� Step 2: Compute wn+1 by solving the Poisson-like equation
:r � rwnþ1 ¼ 1

Dtn
r � ~unþ1;

ownþ1

on

����
oXp

¼ 0: ð3:2Þ
� Step 3: Once the potential w is obtained by solving Eq. (3.2), both the pressure and velocity field ðpnþ1; unþ1Þ
are updated as
unþ1 ¼ ~unþ1 � Dtnrwnþ1; unþ1 � njoXp
¼ 0; ð3:3Þ

pnþ1 ¼ pn þ wnþ1 � lr � ~unþ1: ð3:4Þ
To enhance stability, it is also noted that we advance the time stepping semi-implicity, i.e., the viscosity
terms are treated implicitly while the nonlinear transport terms are treated explicitly in the above scheme.

3.1. Spatial discretization

Above, we discuss the temporal discretization of the Navier–Stokes equation. Now we describe the spatial
discretization. Let x ¼ ðx; yÞ and n ¼ ðn; gÞ denote the physical and computational coordinates, respectively.
A coordinate mapping from the computational domain Xc to the physical domain Xp is given by
x ¼ xðn; gÞ; y ¼ yðn; gÞ; ð3:5Þ

and the inverse map is
n ¼ nðx; yÞ; g ¼ gðx; yÞ: ð3:6Þ

Let the computational grid have unit spacing ðDn ¼ Dg ¼ 1Þ in the computational plane, so that integers

(i, j) can be used for the discrete computational coordinates. In this work, we employ a semi-staggered grid
method, i.e., the potential w, the pressure p and the phase / are defined at the cell center, while the velocity
u is defined at the cell corner. Fig. 1 shows a typical control cell for a semi-staggered grid in the physical
domain (x,y) and in the computational domain ðn; gÞ. The volume flux is defined on its corresponding cell
face. The mesh is defined by two-dimensional grid points xj;k ¼ ðxj;k; yj;kÞ, while the center �xj;k ¼ ð�xj;k; �yj;kÞ
of the control cell Ajþ1

2;kþ
1
2

is defined as the average of the coordinates of its four corners. For a variable u,
one may note that
ux ¼
1

J
½ygun � ynug�; uy ¼

1

J
½�xgun þ xnug�; ð3:7Þ
x

y

ψjkpjk

x

x

x x
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Fig. 1. A control volume of the semi-staggered grid and the mapping in two dimensions.



1142 Z. Tan et al. / Journal of Computational Physics 225 (2007) 1137–1158
where J ¼ xnyg � xgyn is the Jacobian determinant of the coordinate transformation. Using the transform for-
mula (3.7), all derivatives in the velocity gradient ru, the pressure gradient rp and the phase gradient r/ are
mapped into the logical domain which is equipped with a (fixed) uniform mesh. The derivatives in the logical
domain are approximated using a central difference approach.

The viscous terms Du and D/ in the momentum equation are approximated using the similar discretized
method with D/ in the phase equation, except that the former are approximated on the cell vertex while
the latter is approximated on the cell center, which is further discussed in Section 4.

In the first step of the projection method, the discretization for (3.1) leads to two large sparse positive
definite linear systems. We employ a robust multi-grid method from Zeeuw [42] to solve them. This partic-
ular multi-grid method can efficiently handle the high-contrast variable coefficients introduced by the mesh
map.

In the second step of the projection method, we use the finite volume method to solve the Poisson-like
equation (3.2). Integrating r � u over the control volume Ajþ1

2;kþ
1
2
, and using the divergence theorem gives rise

to
 Z
A

jþ1
2
;kþ1

2

r � u dx ¼
X4

i¼1

Z
Li

Uni dl ¼: U jþ1
2;k
� U j�1

2;k
þ V j;kþ1

2
� V j;k�1

2
: ð3:8Þ
Here Uni ¼ uni
1 þ vni

2, where ni ¼ ðni
1; n

i
2Þ denotes the outward unit vector of the ith edge Li of the control vol-

ume Ajþ1
2;kþ

1
2
; i ¼ 1; . . . ; 4. The normal components of mass flux through the east and north faces of the cell are

then given by
U jþ1
2;k
¼ ðŷgu� x̂gvÞjþ1

2;k
; V j;kþ1

2
¼ ðx̂nv� ŷnuÞj;kþ1

2
;

where
ðÂgÞj�1
2;k
¼Aj;kþ1 �Aj;k; ðÂnÞj;k�1

2
¼Ajþ1;k �Aj;k; A ¼ x or y:
Mass is conserved for a given cell when its flux components satisfy the discrete analog of Eq. (2.9),
U jþ1
2;k
� U j�1

2;k
þ V j;kþ1

2
� V j;k�1

2
¼ 0: ð3:9Þ
Suppose there exists a velocity ð~u;~vÞ with corresponding mass flux ð eU ; eV Þ that does not satisfy (3.9). Adding
the gradient of a scalar potential, we obtain Eq. (3.3). After adjustment of ð~u;~vÞ by Eq. (3.3), the mass-flux
components through the east and north faces of the cell become
U jþ1
2;k
¼ eU jþ1

2;k
þ DtðG11wnÞjþ1

2;k
þ DtðG12wgÞjþ1

2;k
; ð3:10Þ

V j;kþ1
2
¼ eV j;kþ1

2
þ DtðG21wnÞj;kþ1

2
þ DtðG22wgÞj;kþ1

2
; ð3:11Þ
where
G11
jþ1

2;k
¼ ½J�1ðx̂g�xg þ ŷg�ygÞ�jþ1

2;k
; G12

jþ1
2;k
¼ ½J�1ðx̂g�xn þ ŷg�ynÞ�jþ1

2;k
;

G21
j;kþ1

2
¼ ½J�1ð�xgx̂n þ �ygŷnÞ�j;kþ1

2
; G22

j;kþ1
2
¼ ½J�1ð�xnx̂n þ �ynŷnÞ�j;kþ1

2
;

are Christoffel symbols which measure the degree of deformation of a coordinate system. The n- and g-deriv-
atives of �x and �y are approximated as follows:
ð �AnÞj�1
2;k
¼ �Aj;k � �Aj�1;k; ð �AnÞj;k�1

2
¼ 1

4
ð �Ajþ1;k þ �Ajþ1;k�1 � �Aj�1;k � �Aj�1;k�1Þ;

ð �AgÞj;k�1
2
¼ �Aj;k � �Aj;k�1; ð �AgÞj�1

2;k
¼ 1

4
ð �Aj;kþ1 þ �Aj�1;kþ1 � �Aj;k�1 � �Aj�1;k�1Þ;

J jþ1
2;k
¼ ð�xn�yg � �xg�ynÞjþ1

2;k
; J j;kþ1

2
¼ ð�xn�yg � �xg�ynÞj;kþ1

2
; A ¼ x or y;
where �Aj;k means the average of A for the four corners of the control cell Ajþ1
2;kþ

1
2
. Substituting Eqs. (3.10) and

(3.11) into (3.9), we obtain the discrete form of the Poisson-like equation (3.2) in computational coordinates,
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ðG11wnÞjþ1
2;k
� ðG11wnÞj�1

2;k

h i
� ðG12wgÞjþ1

2;k
� ðG12wgÞj�1

2;k

h i
� ðG21wnÞj;kþ1

2
� ðG21wnÞj;k�1

2

h i
þ ðG22wgÞj;kþ1

2
� ðG22wgÞj;k�1

2

h i
¼ 1

Dt
eU jþ1

2;k
� eU j�1

2;k
þ eV j;kþ1

2
� eV j;k�1

2

� �
; ð3:12Þ
where
ðwnÞj�1
2;k
¼ wj;k � wj�1;k; ðwgÞj�1

2;k
¼ 1

4
ðwj;kþ1 þ wj�1;kþ1 � wj;k�1 � wj�1;k�1Þ;

ðwgÞj;k�1
2
¼ wj;k � wj;k�1; ðwnÞj;k�1

2
¼ 1

4
ðwjþ1;k þ wjþ1;k�1 � wj�1;k � wj�1;k�1Þ:
When Eq. (3.12) is satisfied, it is not difficult to find that the velocity field is divergence-free in the sense of
(3.9). We refer the reader to [5,21,22] for more details. In our computations, the pure homogeneous Neumann
condition is imposed on the boundary. The Neumann condition is incorporated naturally in Eq. (3.12) as
addressed in [5]. The algebraic equations arising from Poisson discretizations (3.12) are solved by the SOR
method. The efficiency of SOR method depends on the determination of the optimum relaxation parameter
xopt, generally. In this paper, we do not consider any special technique for determining xopt. For simplicity,
in our paper, the relaxation parameter is obtained via several numerical experiments at some different time
levels, and a value in the range 1.93–1.95 is found to give optional results for our adaptive grid. In our actual
computations, we choose the same value 1.94 as the relaxation parameter. It is found that the maximum iter-
ation times required is less than 300 with a tolerance of 10�8 at all the time levels, more often, the number of
SOR iterations is much less than 300. So the SOR method is still satisfactory for our problems. However more
efficient iterative solvers, such as the special preconditioned conjugate gradient scheme in [5] or multi-grid
method in [22], could be easily introduced to solve the resulting linear system. Finally, in the last step of
the projection method, all the equations are also transformed to the computational domain and solved with
a uniform mesh.

4. Phase evolution

We derive easily from (2.10), (2.11) the Lagrange multiplier nðtÞ ¼ 1
jXpj
R

Xp
hð/Þ dx, where jXpj denotes the

area of the solution domain Xp. For incompressible flow, the phase equation (Eq. (2.10)) is equivalent to
the following form:
/t þ ðu/Þx þ ðv/Þy ¼ cðD/� hð/Þ þ nðtÞÞ; ð4:1Þ

with the boundary condition o/

onjoXp
¼ 0. The time-discretized form of Eq. (4.1) is
/nþ1 � /n

Dtn
þ ðunþ1/nÞx þ ðvnþ1/nÞy ¼ c½D/nþ1 � hð/nÞ þ nðtnÞ�: ð4:2Þ
To demonstrate just the principal idea for the phase / evolution, denoting sð/Þ ¼ cðnðtÞ � hð/ÞÞ, we rewrite
Eq. (4.1) in the following form:
/t þ f ð/Þx þ gð/Þy ¼ cD/þ sð/Þ; ðx; yÞ 2 Xp: ð4:3Þ

Again we transform the underlying PDEs using the coordinate transformation (3.5), and then solve the result-
ing equations in the computational domain equipped with a (fixed) uniform mesh. The cell-centered finite vol-
ume method will be employed to solve the transformed PDEs. Note that
/x ¼
1

J
½ðyg/Þn � ðyn/Þg�; /y ¼

1

J
½�ðxg/Þn þ ðxn/Þg�;
where J ¼ xnyg � xgyn is the Jacobian of the coordinate transformation. With the above formulas, the under-
lying equation (4.3) becomes:
/t þ
1

J
F ð/Þn þ

1

J
Gð/Þg ¼ Rþ sð/Þ; ðn; gÞ 2 Xc; ð4:4Þ
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where
F ð/Þ ¼ ygf ð/Þ � xggð/Þ; Gð/Þ ¼ xngð/Þ � ynf ð/Þ; R ¼ cD/:
Here Xc is the computational domain with a uniform grid ðnj; gkÞ. The key point here is to obtain the trans-
formations for D/. Note that
/xx ¼
1

J
½ðJ�1y2

g/nÞn � ðJ�1ynyg/gÞn � ðJ�1ynyg/nÞg þ ðJ�1y2
n/gÞg�; ð4:5Þ

/yy ¼
1

J
½ðJ�1x2

g/nÞn � ðJ�1xnxg/gÞn � ðJ�1xnxg/nÞg þ ðJ�1x2
n/gÞg�; ð4:6Þ
where J ¼ xnyg � xgyn is again the Jacobian determinant of the coordinate transformation. We denote the
phase / at the cell center as /j;k, at the right face center /jþ1

2;k
, and at the top face center /j;kþ1

2
. Applying

the symmetric discretizations as in [33,34] to approximate those terms on the right-hand side of (4.5) and
(4.6), we are able to approximate the Laplacian D/ at cell center ðnjþ1

2
; gkþ1

2
Þ by
ðD/Þj;k ¼
1

J jk

X1

l¼�1

X1

m¼�1

Clm
jk /jþl;kþm; ð4:7Þ
where
C�1;�1
jk ¼ � 1

4
½ðJ�1ynygÞj�1;k þ ðJ�1ynygÞj;k�1 þ ðJ�1xnxgÞj�1;k þ ðJ�1xnxgÞj;k�1�; ð4:8aÞ

C0;�1
jk ¼ ðJ�1y2

nÞj;k�1
2
þ ðJ�1x2

nÞj;k�1
2
; ð4:8bÞ

C�1;0
jk ¼ ðJ�1y2

gÞj�1
2;k
þ ðJ�1x2

gÞj�1
2;k
; ð4:8cÞ

C0;0
jk ¼ �ðJ�1y2

gÞjþ1
2;k
� ðJ�1y2

gÞj�1
2;k
� ðJ�1y2

nÞj;kþ1
2
� ðJ�1y2

nÞj;k�1
2
� ðJ�1x2

gÞjþ1
2;k
� ðJ�1x2

gÞj�1
2;k

� ðJ�1x2
nÞj;kþ1

2
� ðJ�1x2

nÞj;k�1
2
; ð4:8dÞ

C�1;1
jk ¼ 1

4
ðJ�1ynygÞj�1;k þ

1

4
ðJ�1ynygÞj;kþ1 þ

1

4
ðJ�1xnxgÞj�1;k þ

1

4
ðJ�1xnxgÞj;kþ1; ð4:8eÞ

C1;1
jk ¼ �

1

4
ðJ�1ynygÞj;kþ1 �

1

4
ðJ�1ynygÞjþ1;k �

1

4
ðJ�1xnxgÞjþ1;k �

1

4
ðJ�1xnxgÞj;kþ1; ð4:8fÞ
Here, the above n- and g-derivatives of x and y are approximated by the standard central difference. Readers
can refer to [33,34] for more details. One should note that the discretization of the above Laplacian operator is
different from that in the pressure Poisson equation of the previous section. Next we solve (4.4) by a finite
volume approach. Denote the control cell ½nj; njþ1� � ½gk; gkþ1� by ~Bjþ1

2;kþ
1
2

and the cell average values by
�/n
j;k ¼

1

DnDg

Z
~B

jþ1
2
;kþ1

2

/ðn; g; tnÞ dn dg:
For ease of notations, below we will drop the top bar for �/. We shall discretize the convection term explicitly,
whereas treat the diffusion terms implicitly. This gives rise to
/nþ1
j;k � /n

j;k

Dtn
þ kj;k

�F n
jþ1

2;k
� �F n

j�1
2;k

� �
þ lj;k

�Gn
j;kþ1

2
� �Gn

j;k�1
2

� �
¼ Rj;k; ð4:9Þ
where
kj;k ¼
1

DnJ j;k
; lj;k ¼

1

DgJ j;k
; Rj;k ¼ cðD/nþ1Þj;k þ sð/n

j;kÞ:
Here sð/n
j;kÞ ¼ cnðtnÞ � chð/n

j;kÞ, and nðtnÞ ¼ 1
jXp j
P

j;kjAn
jþ1

2;kþ
1
2
jhð/n

j;kÞ, where jAjþ1
2;kþ

1
2
j means the area of the cor-

responding control cell. The one-dimensional Lax–Friedrichs numerical flux
�f ða; bÞ ¼ 1

2
½f ðaÞ þ f ðbÞ �max

/
fjf/jg � ðb� aÞ�; ð4:10Þ
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where the maximum is taken between a and b, will be applied to �F , �G in the n-, g-direction, respectively:
�F j�1
2;k
¼ �F /�j�1

2;k
;/þj�1

2;k

� �
; �Gj;k�1

2
¼ �G /�j;k�1

2
;/þj;k�1

2

� �
: ð4:11Þ
In order to compute (4.11), a piecewise linear approximation will be used:
/�j�1
2;k
¼ /j�1;k þ

Dn
2

qj�1;k; /þj�1
2;k
¼ /j;k �

Dn
2

qj;k;

qj;k ¼ ðsignðq�j;kÞ þ signðqþj;kÞÞ
jqþj;kq�j;kj
jqþj;kj þ jq�j;kj

;

q�j;k ¼
/j;k � /j�1;k

Dn
; qþj;k ¼

/jþ1;k � /j;k

Dn
:

5. Moving mesh methods

The basic idea of the moving mesh method is to relocate grid points in a mesh having a fixed number of
nodes in such a way that the nodes remain concentrated in regions of rapid variation of the solution. The
principal ingredient of the moving mesh methods is the so-called equidistribution principle. In 1D, it
involves selecting mesh points such that some measure of the solution such as arclength or computed error
is equalized over each subinterval. This measure is often connected to an indicator function called monitor
function.

With the numerical scheme (3.1)–(3.4) and (4.9), we can advance the numerical solution one time step to
t ¼ tnþ1. Then the following strategy is employed to carry out the grid restructuring [34]:

a. Solve the mesh redistributing equation (a generalized Laplacian equation) by one Gauss–Seidel iteration,
to get xðkÞ;n.

b. Interpolate the approximate solutions on the new grid xðkÞ;n.
c. Obtain a weighted average of the locally calculated monitor at each computational cell and the sur-

rounding monitor values.
d. The iteration procedure (a)–(c) on grid-motion and solution-interpolation is continued until there is no

significant change in calculating the new grid from one iteration to the next.

The key ingredients of our moving mesh methods consist of three parts: mesh equations, monitor functions
and interpolation. We shall describe the necessary details in the following.

5.1. Mesh-redistribution

The mesh is generated via variational approach. Let x ¼ ðx; yÞ and n ¼ ðn; gÞ denote the physical and com-
putational coordinates. A coordinate mapping from the computational domain Xc to the physical domain Xp

is given by
x ¼ xðn; gÞ; y ¼ yðn; gÞ; ð5:1Þ

and the inverse map is
n ¼ nðx; yÞ; g ¼ gðx; yÞ: ð5:2Þ

The specific map is obtained by minimizing of a mesh adaptation functional of the following form:
E½n; g� ¼ 1

2

Z
Xp

ðrnT G�1
1 rnþrgT G�1

2 rgÞ dx dy; ð5:3Þ
where G1 and G2 are given symmetric positive definite matrices called monitor functions. In general, monitor
functions depend on the underlying solution to be adapted and its derivatives. More terms can be added to the
functional (5.3) to control other aspects of the adaptive mesh such as orthogonality and mesh alignment with a
given vector field [7,6].
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In this work, the adaptive mesh is determined by the corresponding Euler–Lagrange equations :
r � ðG�1
1 rnÞ ¼ 0; r � ðG�1

2 rgÞ ¼ 0: ð5:4Þ

One of the simplest choices of monitor function is G1 ¼ G2 ¼ xI , where I is the identity matrix and x is a

positive weight function. One typical choice of the weight function is x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jruj2

q
, where u is a solution

of the underlying PDEs. This choice of the monitor function corresponds to Winslows variable diffusion
method [39]:
r � 1

x
rn

� �
¼ 0; r � 1

x
rg

� �
¼ 0: ð5:5Þ
(5.4) gives the coordinate transformation in mesh generation and adaptation. Grid generation is basically to
obtain the curvilinear coordinate system (5.1) from the above elliptic system (5.4). Usually, after solving the
system (5.4) for nðxÞ, we find the inverse map to obtain xðnÞ, which is expensive. Certainly, we can directly
solve the corresponding equations on the computational domain Xc by interchanging the dependent and inde-
pendent variables in (5.4). However, the obtained equations are complicated and massive computations are
required. An alternative approach, as suggested by Ceniceros and Hou [11], is to consider a functional defined
in the computational domain directly:
~E½x; y� ¼ 1

2

Z
Xc

ð ~rT xG1
~rxþ ~rT yG2

~ryÞ dn dg; ð5:6Þ
to replace the convectional (5.3), where G1 and G2 are again the monitor functions and ~r ¼ ðon; ogÞT . The cor-
responding Euler–Lagrange equations are then of the form
~r � ðG1
~rxÞ ¼ 0; ~r � ðG2

~ryÞ ¼ 0: ð5:7Þ
If we take the monitor function with the simplest form G1 ¼ G2 ¼ xI , then Eq. (5.7) is reduced to
~r � ðx ~rxÞ ¼ 0; ~r � ðx ~ryÞ ¼ 0: ð5:8Þ
Therefore, the mesh distribution in the physical space can be directly obtained by solving (5.7), which is much
simpler than the conventional variational approach (5.3). However, the system (5.7) can produce degenerated
grids in some concave regions [15]. The original system (5.4) is more accurate and reliable than the simpler
version (5.7) even though it is more complicated. In this paper, all numerical examples have relatively simple
geometry, so Eq. (5.7) can be used for the mesh generation.

In our computation, we use an Gauss–Seidel iteration method [36] to solve for the mesh-moving equation
(5.5) or (5.8). For example, the iteration method for (5.8) is written as follows:
ajþ1
2;k
ðx½m�jþ1;k � x

½mþ1�
j;k Þ � aj�1

2;k
ðx½mþ1�

j;k � x
½mþ1�
j�1;kÞ þ bj;kþ1

2
ðx½m�j;kþ1 � x

½mþ1�
j;k Þ � bj;k�1

2
ðx½mþ1�

j;k � x
½mþ1�
j;k�1Þ ¼ 0 ð5:9Þ
for 1 6 j 6 N n and 1 6 k 6 N g, m ¼ 0; 1; . . . ; where
ajþ1
2;k
¼ xðu½m�

j�1
2;k
Þ ¼ x

1

2
u½m�

j�1
2;kþ

1
2

þ u½m�
j�1

2;k�
1
2

� �� �
;

bjþ1
2;k
¼ xðu½m�

j;k�1
2

Þ ¼ x
1

2
u½m�

jþ1
2;k�

1
2

þ u½m�
j�1

2;k�
1
2

� �� �
:

The iteration is continued until there is no significant change in calculating the new grids from one iteration to
the next. In practice, a few iterations are required at each time level, so the cost for generating new mesh is not
expensive.

5.2. Solution interpolation on the new mesh

After generating the new mesh at each iterative step according to the monitor function, we need to pass the
solution information from the old mesh ðxj;k; yj;kÞ to the newly obtained mesh ð~xj;k; ~yj;kÞ. Many interpolating
schemes have been suggested, such as the non-conservative one for the nonlinear Hamilton–Jacobi equation
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[37] and the conservative interpolation scheme for the hyperbolic conservation laws [36]. Recently, Zhang [43]
presented a new conservative interpolation, which may be more accurate and robust than the Tang and Tang’s
interpolation scheme [36]. However, it remains to be seen the implementation for higher-dimensions. In our
computations, we need to update the velocity, the pressure and the phase on the resulting new mesh based
on the information on the old mesh. For the pressure p and phase /, they can be realized by using the follow-
ing conservative interpolation technique proposed by Tang and Tang [36]:
~Ajþ1
2;kþ

1
2

��� ���~ujþ1
2;kþ

1
2
¼ Ajþ1

2;kþ
1
2

��� ���ujþ1
2;kþ

1
2
� ðcxuÞjþ1;kþ1

2
� ðcxuÞj;kþ1

2

h i
� ðcyuÞjþ1

2;kþ1 � ðcyuÞjþ1
2;k

h i
; ð5:10Þ
where cx
j;k ¼ xj;k � ~xj;k, cy

j;k ¼ yj;k � ~yj;k, and u ¼ / or p. The above formula is obtained using the classical per-
turbation theory. It is obvious that the discretization form (5.10) satisfies the mass-conservation in the follow-
ing discrete sense:
X

j;k

~Ajþ1
2;kþ

1
2

��� ���~ujþ1
2;kþ

1
2
¼
X

j;k

Ajþ1
2;kþ

1
2

��� ���ujþ1
2;kþ

1
2
; u ¼ / or p;
where jAjþ1
2;kþ

1
2
j and j~Ajþ1

2;kþ
1
2
j mean the areas of the corresponding control cells. Some theoretical properties of

this conservative interpolation can be found in [36].
Similarly, after obtain the new mesh ð~xj;k; ~yj;kÞ, we still need to update the velocity on the resulting new grid.

The velocity is not a conservation variable and there is no need to perform the above conservative interpola-
tion. However, interpolation for this variable plays an important role in our moving mesh method too. The
velocity field on the new mesh can be extrapolated as in [37,22] via
uð~xÞ ¼ uðxÞ þ ð~x� xÞ � ru: ð5:11Þ

This step can also be interpreted from the composite rule of derivatives
du

dt
¼ ou

ot
þ v � ru; ð5:12Þ
where v is the mesh motion speed. Eq. (5.11) can be realized in our paper by using the following non-conser-
vative second-order interpolation formula [37]:
~uj;k ¼ uj;k þ ðuxÞj;kð~xj;k � xj;kÞ þ ðuyÞj;kð~yj;k � yj;kÞ ¼ uj;k � ðcnÞj;kðunÞj;k � ðcgÞj;kðugÞj;k; ð5:13Þ
where
ðcnÞj;k ¼
1

J j;k
½xgðy � ~yÞ � ygðx� ~xÞ�j;k; ðcgÞj;k ¼

1

J j;k
½ygðx� ~xÞ � xgðy � ~yÞ�j;k:
We refer the readers to [37] for the detailed interpolation technique. In general, the updated velocity on new
mesh is strictly not divergence-free. On the other hand, a simple method for preserving divergence-free can
be obtained by projecting velocity into the divergence-free space after generating the new mesh at the last
iterative step, using the same procedure (with Dtn ¼ 1) as for the Step 2 of the projection method for the
incompressible Navier–Stokes equations, see Eqs. (3.2) and (3.3). This projection method is applied to ob-
tain the divergence-free velocity in our paper. Another approach is given in [13] and can be implemented by
solving a linear convection equation to obtain the divergence-free interpolation. Special attention has to be
taken to make sure that all the computations above are done in a computational domain with a uniform
mesh.

5.3. Monitor functions

The monitor function is one of the most important elements in the adaptive moving mesh algorithms. It is
very important to choose a suitable monitor function; otherwise satisfactory adaptations cannot be obtained
no matter how good a moving mesh algorithm is. For problems with free interfaces, the singularity often
occurs around the interface where more grid points are required. Away from the interface, it is suggested that
the grids should be as uniform as possible. Appropriate choice of the monitor will generate grids with good
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quality in terms of smoothness, skewness, and aspect ratio. There are several possible choices of the monitor
function for our problems.

An often seen, and probably most basic choice (see [36]) to detect regions with high spatial activity is con-
ventionally the arclength-type monitor function:
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ajr/j2

q
; ð5:14Þ
here the parameter a is an ‘adaptivity’-parameter which controls the amount of adaptivity. For a = 0, we have
x = 1, representing a uniform mesh. Higher values of a > 0 allow for more adaptivity. However, a is problem-
dependent: in general, there is no straightforward rule on how to choose this parameter. In many cases the
monitor functions involve some user-defined parameters which have to be obtained by doing several initial
experiments.

A more sophisticated monitor function dealing with this issue involves a time-dependent parameter that is
chosen automatically. Huang and Russell [17] and Huang and Sun [18] generalize this monitor function with a
parameter b that controls the ratio of points in critical parts, and it reads
x ¼ ð1� bÞaðtÞ þ bkr/k2; with aðtÞ ¼
Z Z

Xc

kr/k2 dn dg: ð5:15Þ
Here b is still a user-defined parameter, but the user does not strictly have to set this parameter. Following the
approach of Huang and Russell [17], it can be shown that for monitor (5.15), b is indeed the ratio of points in
critical parts:
b ¼
R

Xp
bkr/k2 dxR

Xp
ð1� bÞaðtÞ þ bkr/k2 dx

: ð5:16Þ
In this work, we will use the above improved monitor function. In our computations, for simplicity, we take
the fixed choice of b = 0.5, hence, approximately half of the mesh points is located in critical parts of the
domain.

In order to obtain smoother transitions in the mesh, rather than merely using Eqs. (5.8), an additional filter
is applied to the monitor functions. Instead of working with xij, the smoothed values
�xi;j  
4

16
xi;j þ

2

16
ðxiþ1;j þ xi�1;j þ xi;jþ1 þ xi;j�1Þ þ

1

16
ðxi�1;j�1 þ xi�1;jþ1 þ xiþ1;j�1 þ xiþ1;jþ1Þ
are being used in the mesh equations.

5.4. Solution procedure

Our solution procedure consists of two independent parts: PDE evolution and mesh-redistribution. In the
previous sections, we describe the actual numerical discretization. Given the velocity un and the phase function
/n at time tn, the outline of our scheme can be illustrated by the following steps:

1. Solve the Navier–Stokes equations to obtain unþ1. Use a semi-staggered incremental pressure-correction pro-
jection method as described in Section 3.

2. Solve the phase equation to /nþ1. This is done by using the conservative finite volume methods as described
in Section 4 and the new velocity field unþ1.

3. Mesh motion and solution interpolation. Compute the monitor function, evolve/move the mesh and then
update the velocity, pressure and phase function on the new mesh, as described in Section 5.

The last step above is in fact an iteration step and in general requires a few iterations at each time step.
However, in our numerical computations, 1–4 iterations are sufficient to obtain a satisfactory mesh at each
time level except at the initial stage. The projection method is performed to obtain a divergence-free velocity
at the end of the iterative mesh redistribution. At each time step, we need to solve a second-order elliptic
equation (3.1) for unþ1, a Poisson-like equation (3.12) for wnþ1, and a second-order elliptic equation (4.9) for
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/nþ1. They can be efficiently solved by via a robust multi-grid method developed by Zeeuw [42] or the SOR
method.

6. Numerical examples

In this section, we will apply our numerical method to solve for several problems. The first one is to con-
sider the surface tension effects, the second one is to consider both the surface tension effects and Allen–Cahn
dissipation, and the last one is the coalescence of two kissing bubbles. In the numerical examples, for the pur-
pose of comparison with the results in [26], we use the following physical parameters unless otherwise
specified:
Fig.
g ¼ 0:02; k ¼ 0:1; l ¼ 0:1; c ¼ 0:1:
We recall that g is the capillary width (mixing region) of the fluids, k/g is the surface tension constant, l is the
viscosity and c is the ‘‘elastic’’ relaxation time. In all computations, the initial velocity and pressure are taken
to be zero on the square domain ½0; 2p� � ½0; 2p� while the initial condition for / is specified in each example.
All computations are carried out on PC Pentium 4 with 3.00 GHz.

Example 6.1 (Surface tension effects). This test exhibits the surface tension effects of the model. We start with
a square bubble which sits at the center of the domain. The length of side of the square bubble is 2. We take
the phase / inside and outside the bubble to be 1 and �1, respectively. Due to the surface tension, the square
bubble quickly deforms into a circular bubble. In fact, if we choose k = 0 (i.e., no fluid in the system), the
bubble will not deform.

In Figs. 2 and 3, we show the contour plots of the phase, interface positions and the corresponding adaptive
meshes at times t ¼ 0:1; 0:4; 0:7, and 2.5, obtained using a 652 moving grid. From these figures, it can be seen
that, as expected, due to the surface tension, the square bubble quickly deforms into a circular bubble. It is
found that our moving mesh results are in a very good agreement with the results of Liu and Shen [26]
obtained by the Fourier-spectral method. In [26], the problem is computed with 1282 mesh points, while it
can be resolved well with using just only 652 mesh points in our method. Note also that the choice of the
parameter b = 1 leads (as expected) to a mesh that approximately places half of the mesh points within the
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2. Example 6.1: Phase evolution (left), interface predictions (middle) and grid (right) with a 652 moving grid at t ¼ 0:1 and 0.4.
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Fig. 3. Example 6.1: Phase evolution (left), interface predictions (middle) and grid (right) with a 652 moving grid at t ¼ 0:7, and 2.5.
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Fig. 4. Example 6.1: Left is adaptive mesh solution for the phase / at t ¼ 0:4 with Nx ¼ Ny ¼ 65 along the axis y = p and the solid line is
obtained on a uniform mesh with 2572 grid points. Right is the plot of the overall volume fraction versus time to depict mass conservation.
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interface region. There is no exact analytical solution for this example. To test for accuracy, the problem is
computed with the same method on a 2572 uniform grid. It is observed that the moving mesh results on
the coarse grid still agree very well with the finer uniform mesh results and these are graphically indistinguish-
able. For quantitative comparison, in Fig. 4a, we show the computed phase variable profile along the axis
y = p at t ¼ 0:4, obtained using a 652 moving grid and a 2572 uniform grid. In this plot, the solid line repre-
sents the numerical results obtained on the uniform mesh for reference. We can see their good agreement.

In Table 1, the computing CPU times at different time level (t) using moving mesh method on a 652 moving
grid and uniform mesh method on a 2572 uniform grid are listed. The results show that our proposed algo-
rithm takes much less CPU time than the uniform mesh method. It demonstrates that our moving mesh
method has great advantage in conserving computational resource and/or CPU time, comparing with corre-
sponding uniform mesh method.



Table 1
Example 6.1: Comparison of the CPU time in seconds for the different mesh methods

Schemes t ¼ 0:2 t ¼ 0:4 t ¼ 0:6

Moving mesh method 151.28 294.11 435.74
Uniform mesh method 2853.74 5822.07 8718.14

divu

6.098E-06
5.815E-06
5.533E-06
5.251E-06
4.969E-06
4.687E-06
4.405E-06
4.123E-06
3.841E-06
3.559E-06
3.277E-06
2.994E-06

-2.929E-06
-3.212E-06
-3.494E-06
-3.776E-06
-4.058E-06
-4.340E-06
-4.622E-06
-4.904E-06
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Fig. 5. Example 6.1: The divergence of velocity field at t ¼ 0:4 (left) and t ¼ 0:7 (right).
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In Fig. 4b, we present the plot of the total system ‘‘mass’’ (i.e.,
R

X / dx) versus time. It is found that the total
system ‘‘mass’’ is conserved very well for all times; this shows the following conservation of total system
‘‘mass’’:
d

dt

Z
X

/ðx; tÞ dx ¼ 0: ð6:1Þ
Hence, the overall volume fraction of the bubble is preserved very well. One may also note that if we start with
a circular bubble, the bubble is not deformed and the volume of the bubble is preserved naturally.
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Fig. 6. Velocity field at t ¼ 0:4 for Example 6.1.
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Fig. 5 shows the discrete velocity-divergence at t ¼ 0:4 and 0.7 obtained with a 652 moving grid. As
expected, the divergence-free requirement is largely satisfied; the divergence-free quantity is kept quite small
around the interface between the two fluids. Finally, we also show the velocity field at t ¼ 0:4 in Fig. 6.

Example 6.2 (Surface tension effects and Allen–Cahn dissipation). In this test, we choose the same initial
condition as in Example 6.1 but we do not introduce the Lagrange multiple nðtÞ into the Allen–Cahn model.
As expected, again we notice that more grid points are clustered in the neighborhood of the interface. The
square bubble still deforms into a circular bubble while the size of the bubble shrinks (eventually it shrinks to
zero) due to the dissipative mechanism in the Allen–Cahn system. Notice that in both Examples 6.1 and 6.2,
the shape of the bubble vibrates tangentially before it becomes a circular bubble (the preferred configuration).
This tangential vibration is attributed to the so-called T-modes of the spheric normal modes [32]. It illustrates
that the phase field model presented by Liu and Shen [26] captures another important physical aspect of the
surface tension.

In Fig. 7, the interface positions and the corresponding adaptive meshes at times t ¼ 0:1, 0.4, 0.5, and 2.0
are presented, obtained using a 652 moving grid. Again the overall agreement between our moving mesh
results and the Fourier-spectral method results of Liu and Shen [26] who used a 1282 uniform mesh is very
satisfactory. The diffused interface is well resolved with far fewer grid points than those in [26]. The ability of
moving mesh method to capture and follow the interface is clearly demonstrated in both Examples 6.1 and 6.2,
which confirm the effectiveness of our moving mesh method.

Example 6.3 (Coalescence of two kissing bubbles). In the last example, we consider the coalescence of two kiss-
ing bubbles. We start with two circular kissing bubbles with the same radius r ¼ 0:25p, of which the centers
are located at ð0:75p; pÞ and ð1:25p; pÞ initially. The phase / is taken to be 1 inside the two bubbles, while / is
taken to be �1 outside two bubbles. With time, the two bubbles coalesces into one big bubble, very similar to
the phenomenon observed in [26]. This observation is a culmination of the combined surface tension and elas-
tic effect from the phase equation.

In Fig. 8, we plot the numerical solutions, depicting the computed interface positions and the corresponding
adaptive meshes at times t ¼ 0:0, 0.2, 0.5, and 0.6, which were calculated using a 652 moving grid. On the one
hand, as desired, it is seen from these figures that approximately half of the grid points are clustered around
the interface where the phase function is zero; this increases the resolution of the numerical solutions. On the
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Fig. 8. Example 6.3: Phase evolution (left), interface predictions (middle) and grid (right) with a 652 moving grid at t ¼ 0:0, 0.2, 0.5, and
0.6 (top to bottom, respectively).
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other hand, the diffused interface is well resolved and again the computed interface positions agree well with
the results by Fourier-spectral method of Liu and Shen [26]. Compared with the Fourier-spectral method of
Liu and Shen [26] who used 1282 mesh points, we employed only 652 mesh points. From this example, we can
further see that the adaptive moving mesh does an excellent job of tracking the interface and has no difficulty
in dealing with the change in topology, even when they merge. Likewise, the problem is also computed on a
2572 uniform grid. It is found that the coarser moving mesh results agree very well with the finer uniform mesh
results. In Fig. 9a, we show the computed phase variable profile along the axis y ¼ p at t ¼ 0:2 using a 652

moving grid and a 2572 uniform grid. It is clear that these results are in good quantitative agreement. Again
this demonstrates the effectiveness of our moving mesh method and the ability of our method to handle
singular topological changes.

Table 2 shows the computing CPU times at different time level (t) using the moving mesh method on a 652

moving grid and uniform mesh method on a 2572 uniform grid. Again it is observed that our moving mesh
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Fig. 9. Example 6.3: Left is adaptive mesh solution for the phase / at t ¼ 0:2 with Nx ¼ Ny ¼ 65 along the axis y ¼ p and the solid line is
obtained on a uniform mesh with 2572 grid points. Right is the plot of the overall volume fraction versus time to depict mass conservation.

Table 2
Example 6.3: Comparison of the CPU time in seconds for the different mesh methods

Schemes t ¼ 0:2 t ¼ 0:4 t ¼ 0:6

Moving mesh method 148.74 294.84 446.98
Uniform mesh method 2963.81 5815.46 8836.56
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method has great advantage in CPU time saving, comparing with the corresponding uniform mesh method. It
further demonstrates the performance of our proposed algorithm.

The overall volume fraction of the bubble is also preserved very well in this example, see Fig. 9b. In Fig. 10,
the plot of the divergence of the velocity field is presented; it can be seen that the discrete velocity-divergence is
very small even in the interface region, and the divergence-free property is well satisfied. The velocity field at
t ¼ 0:3 is given in Fig. 11.

More computational details are given for Example 6.3. In Table 3, we show the largest and the smallest
sizes and their ratios of the adaptive mesh at different time levels. From this table, we can perceive that at
the initial time a quite large portion of the grid points is moved to the initial interface region due to the sin-
gularity of the initial data. Also notice how the ratios of maximum to minimum of the grid size in the x and y

directions change differently with time. A possible reason is that the largest mesh is found near the boundary
of domain while the smallest mesh is near the interface. The largest mesh nearest the boundary changes faster
in the y-direction while the largest mesh nearest the boundary changes more slowly in the x-direction during
the time evolution than that of the corresponding smallest mesh in the interface region (see Fig. 8). As a result,
the evaluated ratio of the largest to the smallest grid size in the x-direction becomes some smaller while the
same ratio in the y-direction becomes somewhat bigger. If we do not consider the meshes near the boundary,
the trend for the change between the ratios of maximum to minimum for the grid size in the x and y directions
will not be so clear. In Table 1, the maximum and minimum meshes are defined as
Table
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jAjk j
min Dx ¼ min
j;k
fDxj;kg; max Dx ¼ max

j;k
fDxj;kg;
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Fig. 11. Velocity field at t ¼ 0:2 for Example 6.3.

3
le 6.3: adaptive mesh with Nx ¼ Ny ¼ 65

t ¼ 0:0 t ¼ 0:2 t ¼ 0:3 t ¼ 0:6

min Dx 6.58e�03 9.26e�03 8.87e�03 8.91e�03
max Dx 7.84e�01 7.82e�01 7.16e�01 4.34e�01
max/min 119.15 84.45 80.72 48.71

min Dy 7.43e�03 8.91e�03 6.51e�03 1.08e�02
max Dy 5.21e�01 6.73e�01 5.12e�01 1.12
max/min 70.12 75.53 78.65 96.43

min jAjk j 2.53e�04 2.83e�04 3.26e�04 3.24e�04
max jAjk j 6.52e�02 6.46e�02 6.12e�02 9.64e�02
max/min 257.71 228.27 187.73 297.53
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where Dxj;k ¼ maxp;q2f1;2;3;4gfjxp � xqjg. Here xp and xq are the four vertices of the control cell Ajþ1
2;kþ

1
2
, and

jAj;kj denotes the areas of the cell Ajþ1
2;kþ

1
2

in this table. Similar definition is also used for the max Dy and
min Dy.

Finally, we want to briefly discuss about the time steps used in our computations. On the moving mesh
methods for evolution, the selection of time step size is always an issue. For the computations reported in
the paper, the time step is taken to be 10�3. By comparing with the uniform mesh approach, to reach the same
resolution the moving mesh method does not gain anything significant in time stepping but gains in using
much less grid points in space. To increase the efficiency in time stepping, proper local time stepping tech-
niques may be used [35].
7. Concluding remarks

In this paper, we have presented an efficient adaptive moving mesh technique for solving a phase field
model for the mixture of two incompressible fluids. Our moving mesh method combined with phase field
method is fairly simple to code. The numerical approach is based on the strategy proposed in [23] by
decoupling the mesh-moving and PDE evolution at each time step. In this work, we have used the sec-
ond-order conservative interpolation proposed in [36] to update the phase / on the resulting new grid,
while the velocity is re-mapped in a non-conservative approach. A simple method for preserving diver-
gence-free is obtained by projecting velocity into the divergence-free space after generating new mesh at
the last iterative step. For the choice of the monitor function, we used an improved parameter-free monitor
function [17,18]. The phase-field equation is numerically solved by a conservative scheme, and the coupled
incompressible Navier–Stokes equations are solved by the incremental pressure-correction projection
scheme based on the semi-staggered grid method. The Lagrange multiplier n(t) is introduced into the
Allen–Cahn model to conserve the volume. The numerical results are in good agreement with the recent
computations by Fourier-spectral method of Liu and Shen [26] and demonstrate the accuracy and effective-
ness of our proposed algorithm. In order to obtain the same resolution, our approach needs much lesser
grid points and save on computational cost. It is noted that this paper focused on the mixture flow of two
incompressible fluids in the same density and viscosity. The scheme can be easily generalized to allow dif-
ferent densities (q1 and q2) and viscosities (l1 and l2) for the two fluids. In our future work, we will extend
our moving mesh scheme to handle more general variations in the density and viscosity, and even some
challenging 3D model problems.
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